Statistics and Probability – UNIT 2 Designing and Evaluating Studies

Introduction: Instructional time should focus on designing and evaluating statistical studies. Students will learn the differences between sample surveys, observational studies, and experiments. Students will learn the consequences of bias and how to construct a study to minimize bias. In Unit 5, students will make inferences and conclusions based on the types of studies that they have learned in this unit.

CLUSTER	COMMON CORE STATE STANDARDS
Understand and evaluate statistical	HSS.IC.A.1
studies: sample surveys, experiments,	Understand statistics as a process for making inferences about population parameters based on a random sample from
and observational studies.	that population.
	HSS.IC.B.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
Justify conclusions from statistical	HSS.IC.B.6
-	Evaluate reports based on data.
studies.	Dialate reports bused on data.
MATHEMATICAL PRACTICES	LEARNING PROGRESSIONS
1. Make sense of problems and persevere in solving them.	Statistics and Probability Progression http://commoncoretools.me/wp-content/uploads/2012/06/ccss_progression_sp_hs_2012_04_21_bis.pdf
persevere in solving them.	http://commoncoretoois.nic/wp-content/uploads/2012/00/ccss_progression_sp_ns_2012_04_21_bis.pdf
2. Reason abstractly and quantitatively.	
3. Construct viable arguments and critique the reasoning of others.	
4. Model with mathematics.	
5. Use appropriate tools strategically.	
6. Attend to precision.	

LAUSD Secondary Mathematics June 28, 2016 Draft Page 12

7. Look for and make use of structure.	
8. Look for and express regularity in	
repeated reasoning.	

 Students distinguish a population/parameter from a sample/statistic. Students recognize the purpose for different random sampling methods (simple random sample, stratified, cluster, etc.). Students compare and contrast sample surveys, What is the difference between a statistic and a parameter? What is the difference between a statistic and a parameter? What is the best sampling method given scenario? Justify your response. Confounding Convenience sampling 	ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS	KEY VOCABULARY
 observational studies, and experiments. Students understand different experimental designs such as blocking and matched pairs. Which types of studies allow you to conclude a causal relationship between two variables and why? Which types of studies allow you to conclude a causal relationship between two variables and why? Which types of studies allow you to conclude a causal relationship between two variables and why? Which types of studies allow you to conclude a causal relationship between two variables and why? Which types of studies allow you to conclude a causal relationship between two variables and why? Which types of studies allow you to conclude a causal relationship between two variables and why? Which types of studies allow you to conclude a causal relationship between two variables and why? Which types of studies allow you to conclude a causal relationship between two variables and why? Which types of studies allow you to conclude a causal relationship between two variables and why? Which types of studies allow you to conclude a causal relationship between two variables and why? What are the key components of good experiment Sample size (n) Simple random sample Simulation Systematic sampling Variable 	 Students distinguish a population/parameter from a sample/statistic. Students recognize the purpose for different random sampling methods (simple random sample, stratified, cluster, etc.). Students compare and contrast sample surveys, observational studies, and experiments. Students understand different experimental 	 What is the difference between a statistic and a parameter? What is the best sampling method given scenario? Justify your response. Which types of studies allow you to conclude a causal relationship between two variables and why? What are the key components of good 	Bias Blocking Census Cluster sampling Confounding Convenience sampling Double-blind experiment Individuals Nonresponse Placebo effect Population data Randomized experiment Sample size (n) Simple random sample Simulation Stratified sampling Systematic sampling

	RESOURCES		INSTRUCTIONAL STRATEGIES	ASSESSMENT
•	Graphing calculator: randint(command for	•	Emphasize that students should not just refer to	Formative Assessment
	random sampling		a sampling method as biased. Students must be	SBAC – http://www.smarterbalanced.org/
•	Random.org: Create random digits		able to explain why a sampling method is biased	
•	The Data and Story Library (DASL):		and whether it will lead to an <i>overestimation</i> or	LAUSD Periodic Assessment
	http://lib.stat.cmu.edu/DASL		<i>underestimation</i> of the parameter of interest.	District assessments can be accessed through:
•	Against All Odds:	•	Show students multiple methods for creating a	http://achieve.lausd.net/math
	https://www.learner.org/resources/series65.html		simple random sample (SRS): putting slips of	http://achieve.lausd.net/ccss
•	AP Stats Monkey: This site includes a		paper in a hat and mixing it, using dice/coins,	
	wonderful collection of resources written by		using a table, and using technology (calculator	Use your Single Sign On to access the Interim
	teachers and collected by Jason Molesky.		or <u>Random.org</u>).	Assessments
	http://apstatsmonkey.com/StatsMonkey/Statsmo	•	Emphasize the importance of random sampling.	
	nkey.html		Have students create a graphic organizer	

LAUSD Secondary June 28, 2016 Draft Page 13

RESOURCES		INSTRUCTIONAL STRATEGIES	ASSESSMENT
		comparing an SRS, stratified random sample,	California will be administering the SMARTER
		and cluster sample. They should compare the	Balance Assessment as the end of course for grades
		advantages and disadvantages of each.	3-8 and 11. The 11th grade assessment will include
	•	You may choose to have the students design an	items from all High School Common Core strands,
		experiment prior to learning about the key	including Statistics and Probability. For examples,
		principles of experimental design. For example,	visit the SMARTER Balance Assessment at:
		ask them to design an experiment to determine	http://www.smarterbalanced.org/
		if yoga reduces stress using 100 volunteers. You	
		will be surprised to see how many students will	
		incorporate the ideas of comparative groups,	
		randomization, control, and replication prior to	
		formally learning these concepts.	
	•	Have students write a proposal in which they	
		will apply the full statistical investigative	
		process. This could be part of a year-long	
		project.	

LANGUAGE GOALS for low achieving, high achieving, students with disabilities and English Language Learners

• Students will critique studies that have been published.

Example: Since this survey was posted online, it was subject to voluntary response bias. This could lead to an over/under-estimation of...

• Students will explain orally or in writing how to incorporate randomization into a study.

Example: Obtain a list of the names of the 100 subjects and assign each subject a number from 1-100. Use a random number generator to select 50 different numbers. The subjects who correspond to those 50 numbers will be assigned to the treatment group, and the remaining 50 subjects will be assigned to the control group.

• Students will design experiments and clearly explain orally or in writing how all principles of experimental design are incorporated.

Example: In order to determine if listening to music while studying helps improve achievement, first we will randomly assign... We will maintain control by...

LAUSD Secondary Mathematics June 28, 2016 Draft Page 14

PERFORMANCE TASK

Does ginkgo improve memory? The law allows marketers of herbs and other natural substances to make health claims that are not supported by evidence. Brands of ginkgo extract claim to improve memory and concentration. A randomized comparative experiment found no statistically significant evidence for such effects. The subjects were 230 healthy volunteers over 60 years old. They were randomly assigned to ginkgo or a placebo pill (a dummy pill that looks and tastes the same). All the subjects took a battery of tests for learning and memory before treatment started and again after six weeks. (Moore, <u>Basic Practice of Statistics</u>, 5e, 2009)

- (a) The study was double-blind. What does this mean?
- (b) Comment briefly on the extent to which results of this study can be generalized to some larger population, and the extent to which cause and effect has been established.
- (c) Explain why it is more advantageous to use 230 volunteers in this study, rather than 30.
- (d) Using the random digits below (starting at line 103), choose the first four members of the ginkgo group. Explain your method.

103	45467	71709	77558	00095	32863	29485	82226	90056
104	52711	38889	93074	60227	40011	85848	48767	52573
105	95592	94007	69971	91481	60779	53791	17297	59335
106	68417	35013	15529	72765	85089	57067	50211	47487

	DIFFERENTIATION 🕮	
UDL/ FRONT LOADING	ACCELERATION	INTERVENTION
 Statistics and Probability: As an opening activity, guide students in the design and execution of an in class experiment (e.g. taste test of different types of bottled water - determine a question of interest, what variables to collect, who are the observational units, how is it random). Students use "common sense" to design an experiment, then the teacher can connect experiment vocabulary throughout the unit back to students' original ideas). Statistical problem solving is an investigative process that involves four components: formulate questions, collect 	Acceleration for high achieving students: Encourage students to find studies that have incorporated different forms of random sampling, including a multi-stage design. Ask them to explain why they think that the people who planned the study chose each method. Help students distinguish stratified sampling from cluster sampling: in a stratified sample, the population is divided into strata and sample "some from all;" whereas in a cluster sample, we divide the population into clusters and sample "all from some."	 Make a foldable for students to write down all of the important vocabulary in the unit, along with their definitions/applications. Another strategy to build understanding of vocabulary would be to use a word wall in the classroom or have the students create a word puzzle. Provide graphic organizers for survey and experimental design.

LAUSD Secondary June 28, 2016 Draft Page 15

DIFFERENTIATION 🕮					
UDL/ FRONT LOADING	ACCELERATION	INTERVENTION			
data, analyze data, and interpret results. The connection should be reviewed prior to detailing all of the principles of a good experimental design. • Make the connection between hypotheses and conclusions in science classes and the current unit.	As a group project, have students design and conduct an experiment to investigate the effects of response bias in surveys. Allow them to choose the specific topic, but ensure that their topic can answer at least one of the following questions (adopted from Josh Tabor): • Can the wording of a question create response bias? • Does providing additional information create response bias? • Do the characteristics of the interviewer create response bias? • Does anonymity change the responses to sensitive questions? • Does manipulating the answer choices/order of answer choices change the response? • Can revealing other peoples' answers to a question create response bias?				

LAUSD Secondary Mathematics June 28, 2016 Draft Page 16